
1. Introduction

Fast data collection is a primary need in experimen-
tal crystallography. A high throughput can be obtained
using third generation synchrotrons and high-flux neu-
tron sources, but their availability, accessibility and
cost is far beyond the required figures.

The need is therefore for more brilliant laboratory
sources: besides the use of more powerful x-ray gener-
ators, the primary beam flux can be increased by means
of last-generation optical devices such as multilayer

mirrors (a.k.a. Göbel mirrors) and polycapillary colli-
mators (a.k.a. Kumakhov optics). Multilayer mirrors
are composed of alternating layers of heavy and light
elements: an incoming beam is enhanced by the con-
structive interference among the various wave fronts
produced by its reflection on the layered structure. In a
polycapillary device, the x-rays are funneled through
narrow glass capillaries by total external reflection at
the capillary walls. These two broad classes of devices
are, to a certain extent, complementary; multilayer mir-
rors are more suited for applications where a line focus
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is required (reflectometry, grazing incidence diffrac-
tion, etc.), whereas a polycapillary lens suits a point
focus configuration (e.g., stress and texture analysis).
Both types of optical devices can be built as to impose
a focused or a parallel character to the beam and to pro-
vide specific filtering properties.

Despite their widespread availability, both optical
component are not exhaustively described in the x-ray
diffraction literature: in the present work, features and
instrumental effects of polycapillary collimators will be
analyzed in detail by using a Monte-Carlo ray-tracing
approach.

1.1 Polycapillary Lenses

The idea of using straight capillaries to steer an x-ray
beam to the specimen, thus increasing the effective
flux, dates back to the 1950s (e.g., Refs. [1-2]).
Capillaries were tested not only to guide but also to
squeeze the x-rays to a very small spot. Eventually, the
experimentation conducted on laboratory instruments
moved to synchrotron sources, where the use of these
devices would provide a bright collimated beam [3-10].
Applications steadily increased and detailed studies on
the optical response were conducted; for instance the
original conical tapering was soon abandoned in favor
of ellipsoidal or parabolic ones [6] that guarantee better
optical properties of the produced beam. However, the
development of devices resembling the present-day
collimators, started in the 1980s in the former Soviet
Union and actual prototypes were presented in the
1990s [11-13]. It is therefore in the last decade that lit-
erature and applications of these new devices had a
considerable increase.

Polycapillary optics act as x-ray guides to funnel the
rays from the point focus of a tube to the surface of the
specimen; funneling is achieved by multiple total
reflection of the rays on the inner walls of hollow glass
fibers. Tapered and curved capillaries of circular,
square or hexagonal cross section can be tailored to the
users' needs to focus or straighten the x-ray beam.
Moreover, since the funneling principle is also applica-
ble to neutron beams, the development of neutron
optics has paralleled that of x-ray optics [12-15].
Polycapillary devices act also as angular and energy fil-
ters since the critical angle above which total reflection
does not occur is energy-dependent [16]; in particular,
the divergence of the beam is determined both by the
critical angle (i.e., energy of radiation and constitutive
material) and by the diameter and length of the capillar-
ies.

Older devices and neutron beam collimators use sin-
gle capillary or polycapillary fibers guided through
metal meshes, whereas for laboratory use the capillary
fibers are closely packed along their entire length
(monolithic Kumakhov optic) and tapered to the
desired shape.

1.2 Stress/Texture Measurements for Materials
Analysis

The knowledge of the residual stress state in techno-
logical components is essential to assess their reliabili-
ty and durability, and to guarantee the quality of manu-
factured products. Developed since the twenties, the
techniques for the measurement of orientation and
residual stress in bulk materials and thin films using x-
ray diffraction can nowadays profit from the availabili-
ty of dedicated diffractometers. However, major issues
still remain precision and accuracy, closely related to
the signal-to-noise ratio.

The most used technique for stress analysis is the so-
called “sin2ψ method” [17-18], based on the collection
of diffraction data at various tilts of the specimen about
the axis perpendicular to the scattering direction and
lying in the equatorial plane (ψ angle). Instrumental
errors due to specimen tilting should be thus carefully
considered. Quite often, most of the information
regarding the stress state in the measured specimen (in
particular, stress gradients) is contained in the high-tilt
part of the sin2ψ region where instrumental aberrations
play the major role. It is not infrequent the case where,
owing to texture, data can be collected across limited
angular ranges at high ψ angle, raising serious doubts
on the reliability of the analysis if due correction is not
made.

Correction procedures are not always available for
the chosen experimental setting; most commercially
available software packages can deal only with a circu-
lar beam and with specimens of round shape or such
that the whole primary beam is intercepted for all val-
ues of ψ and 2θ, conditions not always met in normal
laboratory practice (e.g., they can be violated in pres-
ence of a specimen displacement or at high tilting).
When a square beam is available (crossed slit collima-
tor) or, in general when high-resolution is requested,
the reliability of these corrections is doubtful. Simple
procedures for correcting instrumental effects when a
polycapillary lens is used for pole figure measurements
have been recently presented by Welzel and Leoni [19].
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2. Experimental Set-Up

Measurements have been conducted on two Philips
X’Pert MRD 4-circle diffractometers1 (in the following
identified as MRD1 and MRD2, respectively). Both
machines are operated by long fine focus copper tubes
(maximum power 2.2 kW) in point focus mode and
have the same optical setup with a polycapillary colli-
mator followed by a set of adjustable crossed-slits in
the primary path and a parallel foils collimator plus a
graphite flat-crystal analyzer on the secondary arm. The
nominal (outer) diameter of the polycapillary lens was
6 mm and 9 mm for the two instruments, respectively.
More details on the actual beam path are given in Fig.
1 and in the raytracing section.

To characterize both instrumental aberrations and
features of the correction algorithm, a large set of spec-
imens was used:
• Fine ground tungsten (Merck) and germanium

(Johnson-Mattey) powders. The specimens are analo-
gous to those used in [19] and were obtained by fill-

ing a shallow square cavity cut on a flat aluminum
disk. Particular care was taken to assure the flatness
of the surface of the powder, checked by means of an
optical microscope. The dimension of the cavity was
14 mm × 14 mm for both specimens. The samples can
be considered as infinitely thick (real thickness 2
mm);

• Fine ground silicon powder (Ventron). The specimen
was the same as in the cited paper by Welzel and
Leoni [19], and was obtained by sedimentation of the
powder, previously dispersed in ethanol, onto a sili-
con wafer on a 14 mm × 14 mm area as to obtain an
average mass coverage of 9.4 µg/mm2;

• Copper thin film. A thin copper layer (500 nm) was
deposited onto an oxidized silicon substrate in ultra
high vacuum by magnetron sputtering (further details
can be found in [20]). This specimen, possessing a
strong but complex texture, was used to check the
performance of the raytracing algorithm for the cor-
rection of the instrumental effects;
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1 Certain commercial equipment, instruments, or materials are iden-
tified in this paper to foster understanding. Such identification does
not imply recommendation or endorsement by the National Institute
of Standards and Technology, nor does it imply that the materials or
equipment identified are necessarily the best available for the
pupose.

Fig. 1. Details of the beam path with indication of the optical components and reference systems used throughout the paper. The references G
and L should be concentric (same origin; the latter has been shifted for clarity).



• Cold rolled Ni(V) sheet (a typical metal substrate for
high-Tc superconducting thin films); the sheet was
rolled to induce a high degree of in-plane texture;

• Zinc oxide powder (ZnO, Carlo Erba Analyticals) for
the evaluation of the instrument broadening function.
A line profile standard (such as LaB6, SRM 660a)
should be used for the characterization of the instru-
mental function for the various diffractometers.
However, due to the low resolution expected for the
instrument (i.e., wide peaks), the residual broadening
of a fine ground zinc oxide powder is negligible with
respect to the instrumental width thus virtually any
kind of fine ground powder could be used. Moreover,
zinc oxide forms very flat surfaces and the powder
aggregate is compact enough to permit measurements
at positive and negative tilting. The powder was
loaded in a sample holder equal to that used for tung-
sten and silicon;

• Lanthanum hexaboride standard powder, LaB6 SRM
660a. This is the line profile/line position standard
recently produced by the National Institute of
Standards and Technology (NIST) [21]; it possesses
negligible size and strain broadening and it will be
used for comparison with the ZnO powder.

Some data regarding these specimens will be presented
here. A custom non-linear least squares fitting program
based on Pearson VII (PVII) functions was used to
extract peak position and shape information from the
raw data [19]. The emission profile was considered as a
doublet of PVII functions with bound shape parameters
and positions (for the emission spectra of copper, see
for instance [22]). For each diffraction line or group of
overlapping diffraction lines, a linear background was
assumed.

3. Modeling of the Lens/Crossed-Slit
Assembly

3.1 Beam Divergence

When a polycapillary collimator is used, the diver-
gence of the primary beam (both axial and equatorial)
is mainly determined by the diameter of the capillaries,
their tapering and the type of glass employed in the fab-
rication. The knowledge of the angular dispersion of
the primary beam is of great importance for a correct
modeling of the diffraction system. The equatorial
divergence can be measured by scanning the primary
beam about the 2θ = 0° position and using a narrow
crossed slit placed in front of the detector. In the same
way, the axial divergence should be measured by scan-

ning the primary beam perpendicularly to the diffrac-
tion plane, a motion not attainable even on a 4-circle
diffractometer, since source and detector cannot move
out of the equatorial plane.

An alternative and sufficiently accurate method for
measuring the equatorial divergence consists in collect-
ing a rocking curve (ω scan) about one of the reflec-
tions of a single crystal. Figure 2 shows the (004)-Si
rocking curve of a silicon wafer (<00l> cut) obtained at
45 kV and 40 mA with completely open slits and with-
out any secondary optics but an aluminum foil (attenu-
ator) placed in front of the detector. When the (intrin-
sic) Darwin width of the specimen is negligible with
respect to the beam divergence, the Full Width at Half
Maximum (FWHM) of the rocking curve (indicated in
the following as α) is a good estimate for the equatori-
al divergence. In this case α ≈ 0.3°, thus the approxi-
mation is fully justified (the Darwin width for a silicon
wafer is two orders of magnitude smaller).

Due to the difficulties in measuring the axial diver-
gence accurately and since there is no reason to sup-
pose axial and equatorial divergence to differ (the cap-
illaries are circular and the whole assembly possesses a
cylindrical symmetry), the two divergences will be
considered equal at the exit of the collimator.

In the secondary path the divergence is mainly con-
trolled by a Parallel Foils Collimator (PFC) and by the
crystal analyzer; however, as it will be shown later by
simulation, the major control over the divergence is
played by the PFC (mainly equatorial divergence,
reduced to tenths of a degree; the axial divergence is
not greatly reduced, but limited to a few degrees)
whereas the analyzer reduces the fluorescence signal,
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Fig. 2. (004) Si rocking curve (tilt about the Lz axis) of a <00l> cut
silicon wafer collected on MRD I: experimental values (dots) and
gaussian fit (line).



the axial divergence and cuts unwanted energies from
the diffracted signal. In particular, the mosaicity of the
flat crystal analyzer (pyrolitic graphite) contributes to
limit the axial and equatorial divergence to a few hun-
dredths of a degree (Gaussian distribution).

3.2 Beam Shape, Homogeneity, and Uniformity

The shape and uniformity of the beam reaching the
specimen strongly depends on the properties of lens
and x-ray source. The beam emerging from the focal
spot of a sealed tube at a typical takeoff angle of 6°
exhibits a non-circular shape, with local intensity max-
ima evenly distributed throughout the cross section,
and shows a strongly divergent character. Moreover, it
is well known from the literature, and experimentally
observable, that an odd projection of the shape of the
anode on the specimen produces unwanted features on
peak tails (the so-called tube tails [23-24])

The lens is expected to stop all energies higher than
10 keV, thus the spectral response of the tube-lens sys-
tem should be improved over that of a traditional pin-
hole system. An effective way to picture the actual tube
emission spectrum consists in the collection of the θ /2θ
pattern of a LiF single crystal, as shown in Fig. 3 for
MRD I. During data collection, the energy band-pass
filter of the detector was totally open. Whereas at 15 kV
only the Kα doublet is visible, at 45 kV as set of extra
features appear, namely the Cu-Kβ emission line at
0.139 nm and the W-Lα line. The latter is due to tung-
sten contamination of the copper anode due to evapora-
tion from the filament. The odd intensity ratio observed
for the Kα and Kβ lines (against an expected value of
about 4) is due to the larger attenuation of the main
spectral component by the copper foil used to shield the
detector (cf. mass/absorption values corresponding to
the two spectral components; as a reference [25]). The
high energy signal (below ca. 0.12 nm) could be due to
the electronic noise. The cut wavelength of the lens
(about 0.12 nm) is therefore too low to stop some of the
spurious signal present in the emission spectrum of the
tube and a real gain in spectral purity cannot be
inferred.

An additional feature, seldom considered for a pin-
hole or a crossed-slit system, is the distribution of the
signal intensity across the section of the primary beam,
expected to be a constant for an ideal instrument. This
distribution could be directly imaged by means of a
2-D detector; however, should an area detector be
unavailable, a (high resolution) x-ray film can be used
to obtain a picture of the beam. With a flatbed scanner
(the line scanner typically used for the analysis of x-ray

films does not permit to collect area scans), the com-
plete reconstruction of the intensity profile of the pri-
mary beam is then possible2. Figure 4 shows the result
for both MRD I and MRD II at three different slit open-
ings, namely 1 × 1 mm, 6 × 6 mm, and 10 × 10 mm. In
all three cases the intensity distribution is nearly-
Gaussian (as can be observed by fitting of a line scan
taken through the film). The film was placed in the
goniometer center (sample position), perpendicular to
the lens and exposed for 2 min to a beam produced at
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b

Fig. 3. LiF patterns collected on the MRD I system in front of the
lens using a 200 µm Cu filter at (a) 15 kV/15 mA and (b) 45 kV/40
mA. The wavelength has been calculated from the cell parameter of
LiF, a0 = 0.4027 nm (ICDD-JCPDS PC-PDF card #04-0857).

2 The result can be considered as qualitatively valid only. Non-linear
effects, mainly due to the processing of the x-ray film, hinders a reli-
able quantitative analysis.



15 kV and 15 mA and filtered by a nickel foil (125 µm
thickness). Besides the voltage/current difference, the
emission spectrum is close to that present at the exit of
the monochromator in normal operating conditions (cf.
Fig. 3).

Missing-intensity spots are clearly visible for both
lenses, and the intensity tends to decrease towards the
outer lens circumference (Fig. 4). Possible explanation
is the obstruction of some of the capillaries, e.g., by
glass debris. The uneven intensity distribution along
the lens radius induces a non linearity in the transfer
function of the lens-slit assembly; in other words, the
integrated intensity of the primary beam does not fol-
low the increase of the area selected by the cross-slits
collimator.

To measure the transfer function indirectly, a detec-
tor is mounted in front of the collimator and the aper-
ture of the two crossed slits is varied; the result is
shown in Fig. 5 for MRD I and MRD II and provides
an integrated information. The transfer function can be

modeled both for the ideal case, always considered in
the literature (uniform incoming beam), and for an
incoming beam possessing the observed characteristics.
A fit of the resulting equation to the measured data
gives the parameters of the lens to be used for the
Monte Carlo ray-tracing of the diffraction system.

Calculation in the Ideal Case

In an ideal case (uniform intensity, circular cross-
section of the beam and crossed slits in front of it),
three distinct regions can be identified, delimited by
particular values of the slits aperture; they are marked
with roman numerals in Fig. 5. A simple treatment of
this case follows by using a square opening for the slits
(horizontal and vertical dimensions of the primary
beam are therefore equal to w) and supposing beam,
polycapillary collimator and crossed-slits setup being
concentric. The maximum for w will be indicated as
wmax. We can define an adimensional slit aperture
w = w/(2R) where R is the nominal (i.e., outer) radius of
the collimator (lens).

In region I the cross section of the beam is fully
embedded in that of the collimator, i.e., the slit aperture
is smaller than the edge of the largest square that can be
inscribed in the lens circumference (the limiting slit
aperture is thus In this
region, the normalized transmitted intensity follows a
parabolic law:

(1)

For bigger openings and up to the limit when the whole
lens is exposed (i.e., in the range region
II), the normalized transmitted intensity can be
expressed as:

(2)

For openings bigger than 2R (region III), no variation
of the transmitted beam is expected, as the entire lens is
exposed 

Calculation for the Non-Ideal Case

The non-uniformity of the primary beam can be
introduced via a function describing the distribution of
intensity through the section of the beam. Symmetry
considerations suggest a function dependent exclusive-
ly on the position along the radius of the lens (Radial
Intensity Distribution Function, RIDF). Following the
previous observation of the direct beam (cf. Fig. 4) and
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Fig. 4. Polycapillary exit beam images of the (a) MRD I and (b)
MRD II systems for a 1 × 1 mm, 6 × 6 mm, and 10 × 10 mm crossed
slits aperture.

Fig. 5. Intensity distribution for the MRD I (full dots correspond to
raw data; line to model) and MRD II (open dots and dashed line)
lenses recorded by varying the aperture in both directions.
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the integrated measurement of Fig. 5, a Gaussian RIDF
can be used:

(3)

where I(ρ,σ, R) is the intensity transmitted by an infin-
itesimal area at a distance ρ from the center of the poly-
capillary collimator, I0 is the total intensity transferred
by the lens (i.e., the intensity measurable when the col-
limator slits are removed), σ is the Half Width at Half
Maximum (HWHM) of the RIDF and R is the (outer)
radius of the lens. This is, to some extent, a simplifica-
tion of the problem (the actual picture is more complex
as clear from Fig. 4). The functional form of Eq. (3),
however, does not affect the treatment of the problem
that preserves its generality.

Due to the crossed slits, only part of the intensity,
namely the integral of the RIDF over the cross section
of the beam, reaches the specimen. The more general
case of a rectangular beam of width w and height h will
be considered; as for the ideal case, the intensity trans-
mission depends on the slits opening. Region I fulfils
the requirement that the selected area lies entirely with-
in the capillary boundary (i.e., w2 + h2 ≤ 4R2). The cor-
responding normalized transmitted intensity is3:

(4)

When the condition for region I is violated, but the hor-
izontal and/or vertical dimensions of the beam are both
less than 2R, we enter region II; an analytical solution
for this case cannot be found and the result has to be
computed numerically from:

(5)

When only one of the two dimensions of the beam is
bigger than 2R, region III is reached; in this region, the
intensity follows directly from Eq. (5), provided that
the dimension exceeding this limit is replaced by 2R.
The solution TIV(w,h,σ, R) = 1 holds for region IV, i.e.,
when the lens is fully exposed.

It is worth noting that whenever the condition w = h
is met, the four regions reduces to three as in the ideal
case described before.

3.2 Model Testing

To assess the validity of the proposed solution, Eqs.
(4) and (5) were fit to the experimental data of Fig. 5 by
means of the commercial software package Origin Pro
ver. 6.1 (Origin Labs inc.). The parameters obtained
from the fit are reported in Table 1.

An effective radius, lower than the geometrical
dimension of the lens assembly (nominal radius) is
obtained (edge effects are therefore present). Moreover,
different widths of the intensity distribution were
obtained for the various lenses (cf. Fig. 6a and b). There
are different interpretations of this behavior, all due to
the non-ideal nature of the lens. In any case, as also
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Table 1. Modeling result: R is the geometrical radius of the lens, wI
the limit for region I in the ideal case, Rmodel and σmodel the effective
radius of the lens and the HWHM of the Gaussian distribution func-
tion [Eq. (3)], respectively. The agreement coefficient Rfit

2 are also
reported

Diffractometer R wI Rmodel σmodel Rfit
2

(mm) (mm) (mm) (mm)

MRD 1 3.5 4.95 3.11(2) 1.78(1) 0.99993
MRD 2 4.5 6.36 4.20(2) 2.24(1) 0.99998



suggested by the instrument manufacturer, the maxi-
mum size of the beam should be limited to few mil-
limeters in both directions to guarantee an optimal
response of the instrument.

An additional set of intensity measurements (average
over 10 s, 10 µm Cu attenuator used) was conducted at
various slit openings by keeping one of the dimensions
of the beam fixed to a nominal value of 0.1 mm. The
result for MRD II is shown in Fig. 7; the two sets of
experimental points represent the integral of the radial
distribution function performed along two perpendicu-
lar directions (w and h is varied, respectively). For a
narrow slit, the integrated intensity (without normaliza-
tion) can be written with a good approximation as

(6)

where either h or w (or both) must be small and where
I0 still represents the intensity measurable when the lens
is fully exposed. The formula is valid up to an aperture
of the slits equal to the diameter of the lens (for bigger
apertures, being the lens fully exposed, the intensity
remains constant at I0).

The data previously obtained (Table 1) were inserted
in Eq. (6) to reproduce the trend of Fig. 7; moreover I0

(194 000 cps) was obtained from an intensity measure-
ment conducted at maximum aperture (10 mm × 10
mm) whereas the value of the fixed dimension, i.e., h
(respectively, w) was refined. The difference between
the two curves can in fact be attributed to a slight error
in the position of the slit that was kept fixed; in partic-
ular w = 0.0978 mm and h = 0.0947 mm (expected val-
ues 0.1 mm) were refined in the two cases, respective-
ly (see Table 2). The slits were positioned manually,
thus the given explanation is fully justified.

The agreement between data and model confirms
that the chosen RIDF well reproduces the features of
the lens even when some degree of non-homogeneity is
present.
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a

b

Fig. 6. Modelling of the radial intensity distribution for the (a)
MRD I and (b) MRD II lenses.

narrow 0( , , , ) ( , , , )II h w R I T h w Rρ σ= ⋅

Fig. 7. Intensity distribution for the MRD II lens recorded by vary-
ing the aperture independently in the vertical (fixed width, full dots)
and horizontal (fixed height, open dots) directions. The nominal
fixed height (width) was 0.1 mm. Modelling results for both cases are
shown as continuous line (fixed width) and dashed line (fixed
height), respectively.

Table 2. Results for the modeling of the data shown in Fig. 8

Expected Refined Rfit
2

dimension dimension

Fixed height 0.1 0.0947(2) 0.99934
Fixed width 0.1 0.0978(3) 0.99945



4. Monte Carlo Raytracing of the System

The measured profile h can be obtained as convolu-
tion of the sample broadening effects f with the instru-
mental profile g (i.e., h = f ⊗ g). The separation of the
various contributions is still a hot topic in the literature
and both convolutive and deconvolutive approaches
have been proposed and tested. Among them, the
Fourier deconvolutive approach is probably the most
frequently applied to date as it combines calculation
speed with a physical significance of the results (in the
Fourier formulation, the convolution integral is trans-
formed in a product, greatly simplifying the mathemat-
ical complexity of the problem).

In the deconvolutive approach, the instrumental con-
tribution is unfolded from the measured profile and the
whole analysis is performed on the extracted f function,
thus replacing the original raw data with the decon-
volved data. Convolutive approaches instead, work
directly on the measured data, building the expected h
profile from a model description of the f and g func-
tions. In this way, parameters referring both to the
specimen and to the instrument can be refined together
by modelling the measured data. The so-called
Fundamental Parameters Approach (FPA; for details
see, e.g., Ref. [23,24,26-31]), i.e., the analytical model-
ing of the instrumental profile from the physical dimen-
sions of the optical devices present in the diffractome-
ter, can also be used.

With respect to the deconvolutive approaches, con-
volutive methods preserve the original (raw) data and
the associated statistics, resulting in a higher accuracy
and physical significance of the results. In the follow-
ing, the convolutive route will be thus followed.

The FPA has been recently proposed in a fully ana-
lytical version for the determination of the θ /2θ diffrac-
tion patterns both for laboratory instruments (see, e.g.,
Refs. [23,24,27-33]) and for large-scale facilities (neu-
tron diffraction and synchrotron radiation x-ray diffrac-
tion). In all cases, the modeling was possible because of
the simple nature of the problem. More complex prob-
lems (e.g., non-conventional optical components or
complex systems) can be modeled by Monte Carlo ray-
tracing: as an example, see the SHADOW [34-35] or
XOP [36-37] packages commonly used for the simula-
tion of the x-ray response of complex optical devices.

In the proposed Monte Carlo raytracing, the path of
a generic x-ray is calculated analytically from the
source to the detector. Each optical device is modeled
and its effect evaluated for a single ray (spatial/angular
filtering). A set of random rays is generated, possessing
the characteristics (intensity/divergence) known for the

primary beam, and their path followed from the source
to the detector (if the latter is reached).

The non-uniform intensity distribution in the pri-
mary beam and complex movements of the specimen
can be thus considered. The flexibility is paid in terms
of efficiency, the calculation speed being orders of
magnitude lower than for a correspondent fully analyt-
ical case (as in Refs. [27-30,32], for instance).

One of the features of the Monte Carlo algorithm is
the asymptotic convergence. There is a critical number
of rays above which increasing the number of rays does
not appreciably increases the accuracy of the result. For
our case, the critical value is about 5 × 106 rays.

Since the raytracing procedure computes only the
instrumental effects, both the emission profile and the
sample broadening contribution (supposed to be absent,
thus modeled by a Dirac's delta function) must be
given. For the emission profile, the data for copper
radiation given by Hölzer et al. [22] is used.

To reduce the complexity of the raytracing, a set of
suitable reference systems will be considered, as in Fig.
1. Each coordinate is given a superscript indicating the
reference frame in which it is considered. Whereas ital-
ic non-bold letters denote scalars (e.g., v), an arrow is
used to identify a vector (e.g., v) and a hat to mark a
unit vector (e.g., v = v/v). Following this convention, a
vector represented in the reference frame B is identified
as vB = (xB, yB, zB). Unless otherwise specified, rota-
tions are counterclockwise.

4.1 Primary Beam: X-Ray Lens and Specimen

The reference systems used throughout the text are
reported in Fig. 1 whereas Table 3 summarizes the main
parameters describing the diffraction system. The refer-
ence system G fixed in the laboratory has the origin in
the goniometric center4 (see Refs. [28,29]), the y axis
pointing towards the source when θ = 0 and the x axis
normal to the surface of the specimen when ψ = 0 (for
the definition of the angles, see Fig. 1).

Let us consider the primary ray originat-
ing in P and directed along D (ξ is the running coordi-
nate, i.e., the norm of the distance between r and P). In
the reference frame L, whose x and y axes lie on the
cross section of the polycapillary collimator, the point
P is represented as The vector D car-
ries the information about the divergence of the ray; it
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and detector) and the goniometric axis (the axis of rotation of the
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can be easily constructed as to have an axial divergence
∆α and an equatorial divergence ∆θ by rotating the vec-
tor (0, 1, 0) in G about the x axis by the angle ∆α and
subsequently about the z axis by the angle θ + ∆θ (rota-
tion matrices R3 and R4, respectively):

(7)

With these definitions, DG = R4 · R3 · (0,1,0)T. Since the
point P can be represented in G as:

(8)

we can obtain the parametric equation for the primary
ray

(9)

The surface of the specimen displaced by the quantity
δ (so as to lay in the plane xG = –δ) and rotated about
the axis y of G by an angle ψ (specimen tilting), is
described in G by:

(10)

The common solution of Eqs. (9) and (10), i.e., the
solution of the system Eq. (11):

(11)

gives the point  of intersection of r
with the surface of the specimen (ξh is the distance
between P and H). In the reference S aligned with the
sides of the specimen, the coordinates of the hit point
become:

(12)

A quicker way to consider the rotation of the specimen
about its normal, is to perform a counter-clockwise
rotation of the coordinates by the angle φ (to rep-
resent the hit point in the reference system centered on
the specimen and aligned with the sides of it, cf. Fig. 1):
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Table 3. Parameters characterizing the diffraction system

Parameter Description

SW Width of the specimen
SH Height of the specimen
CW Width of the entrance section of the parallel foils collimator
CH Height of the entrance section of the parallel foils collimator
CD Distance between the parallel foils
CT Thickness of one of the foils composing the collimator
AW Width of the analyzer crystal
AH Height of the analyzer crystal
d11 Distance between the exit of the lens and the goniometric center
d21 Distance between the goniometric center and the entrance section of the parallel foils collimator
d22 Length of the parallel foils collimator
d23 Distance between the exit of the parallel foils collimator and the center of the crystal analyzer
d24 Distance between the center of the crystal analyzer and the detector
RD Radius of the sensitive area of the detector
θ Primary angle (angle in the equatorial plane between the surface of the specimen and the axis of the lens)
θB Bragg (diffraction) angle relative to the Kα1 wavelength for the reflection considered
θd Secondary angle (angle in the equatorial plane between the secondary arm and the surface of the specimen, considered from the

negative y direction of G)
θa Angle of the analyzer. In our case, since the {002} reflection of graphite is used, it corresponds to 13.285°
σa Mosaic spread of the analyzer, i.e., HWHM of the rocking curve collected on the employed reflection of the crystal

3
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(13)

(the specimen is supposed to be rotated clockwise by
φ).

When the conditions
are satisfied, diffraction occurs; if not, the tracing of the
ray will end (the treatment is valid whatever the shape
of the specimen. If we call Σ the surface of the speci-
men, the condition transforms into

4.2 Secondary Beam: Parallel Foils Collimator
and Crystal Analyzer

In the raytracing calculation, every ray hitting the
surface of the specimen generates a diffraction cone. In
a real measurement, this is not necessarily the case: the
occurrence of diffraction is a statistical event and most
incoming rays are not diffracted but absorbed in the
specimen. However, this effect need not be considered
as the number of rays reaching the detector would just
be scaled by a constant factor. An analogous reasoning
is valid for texture, simply changing the partition of
intensity along different scattering directions (texture
can therefore be considered a posteriori).

For the diffractometers analyzed here, the source is
fixed and both specimen and source rotate about the
goniometric axis; however, a simpler mathematical
model can be obtained if the opposite is done, i.e., if
specimen is considered stationary and both source and
detector rotate. These two operation modes are equiva-
lent.

To simulate the diffraction event and the collection
of the diffracted signal, we should consider both the
diffraction (Bragg) angle θB and the detector angle θd,
the first dependent on the material (interplanar spac-
ing), the second imposed by the scan mode (that estab-
lishes the direction along which the secondary arm is
positioned).

A cone d(ξ, χ) is defined by the parametric equation:

(14)

where P is the vertex of the cone (in our case the point
where diffraction occurs, i.e., H) and E(χ) is the direc-
trix (i.e., in this case, the set of all diffracted rays, para-
meterized by the rotation angle about the axis of the
cone). The directrix can be conveniently decomposed
along three orthogonal vectors U, V, W with U as the
axis of the cone.

To generate the diffraction cone relative to D, we can
start from the ray (0,1,0) in G generating the correspon-
ding diffraction cone with the vertex in the origin of the
axes. Subsequently, the rotations described previously
[cf. Eq. (7)] produce the expected set of rays. With a
proper selection of the sequence, only rotations around
the axes of G need be employed. Starting from (0,1,0)
a clockwise rotation by π – 2θb about the z axis (rota-
tion matrix R1) gives the directrix of the diffraction
cone

(15)

Consequently, the diffraction cone can be obtained by
rotating the directrix about the y axis (matrix R2)

(16)

and is characterized by the equation ξ R2 · R1 · (0,1,0)T.
It is worth noting that the direction of rotation in R2

does not play any role in the problem since a complete
revolution is needed to generate the whole cone. The
cone has then to be rotated in order to align its axis to
the primary ray D, by means of the matrices [Eq. (7)].
Since the cone is centered in the origin of G, the rota-
tion would affect only the directrix.

In order to understand whether the ray will reach the
detector or will be filtered by the optical devices posi-
tioned along the secondary path, we look for the inter-
section of the diffraction cone with the parallel plates
collimator and with the analyzer. The calculation will
be conveniently conducted in D, obtained by the clock-
wise rotation of G about z by the angle π-θd. In this
way, the y axis of the D frame is aligned along the sec-
ondary arm, whereas the entrance and exit sections of
the parallel foils collimator lie on two parallel planes
whose equations are yD = d21 and yD = d21 + d22, respec-
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tively. At this point, a rotation about the z axis of G suf-
fice to move all the problem in the reference system D.
The coordinate transformation matrix to be used is:

(17)

(note the discordance of signs with respect to R4.
Consider that Eq. (17) transforms a frame, i.e., changes
the reference, whereas R4 rotates a vector in a fixed
frame).

The final expression for the diffraction cone (repre-
sented in the system D) is obtained by combination of
the matrices:

(18)

The point  determined by the intersec-
tion of the diffracted beam with the plane yD = κ in the
secondary path, obeys the following system of equa-
tions:

(19)

It is worth noting that due to our choices, the compo-
nents of the directrix of the cone EG(χ) are the tangent
of the angles formed by the diffracted ray and the axes
of D. In particular, the z and x components are the
divergence angles of the diffracted beam in the axial
and equatorial direction, respectively, with respect to
the reference D.

The solution of Eq. (19) can be used to evaluate the
position of the ray both at the entrance and exit section
of the parallel foils collimator. If

and then the beam will be ana-
lyzed by the parallel foils collimator (the condition that
it could actually exit the collimator is evaluated). The
PFC has a multiple effect: it limits the equatorial diver-
gence (2θd max = CW/d22), it cuts part of the beam (finite
entrance section) and it limits the axial divergence
(2αmax = CH/d22). The axial and equatorial divergence
to be considered are those derived from the directrix of
the cone.

The number of parallel foils in the collimator should
be also considered, lowering the number of rays that
reaches the analyzer (masking effect). From the practi-
cal point of view, each couple of parallel foils of length
d and spacing s is equivalent to a set of narrow slits of
angular aperture arctan(d/s); their filtering effect
depends not only on the incidence angle of the beam,
but also on the relative position of the beam with
respect to the entrance section (a beam very close to
one of the foils is not totally equivalent to a ray arriv-
ing in the middle between two foils). The intensity of
the beam exiting the collimator has to be corrected for
this effect: to this purpose we use a triangular function
(as convolution of the box functions describing the
entrance and exit slits composing a parallel foils pair).
According to the horizontal position on
the exit section of the PFC
the intensity of the ray is scaled by a factor

The intersection of the beam with the plane of the
analyzer follows the case of the collimator:

(20)

where are the coordinates of the intersection
point expressed in the reference system A aligned with
the edges of the analyzer, da is the distance of the cen-
ter of the analyzer to the origin of G (da = d21 + d22 +
d23) and θa is the angle of the analyzer with respect to
the secondary arm (2θa = 26.57° for a (002)-graphite
crystal).

Lying on a plane perpendicular to the equatorial
plane, the analyzer can be considered (from a geomet-
rical point of view) as a mirror for the x-rays, thus actu-
al calculations of the reflection follow easily from Eq.
(19). The position on the detector is thus (–yc(d21 + d22 +
d23 + d24), zc(d21 + d22 + d23 + d24)).

The ray is detected if

RD being the radius of the sensitive area of the detec-
tor.
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4.3 Integrated Intensity

The proposed scheme allows the calculation of the
path for all possible rays leaving the polycapillary col-
limator. To obtain a diffraction profile, i.e., to actually
mimic the diffraction experiment, an intensity value
has to be attributed to each ray, dependent on the char-
acteristics of the capillary and of the optical devices
crossed by the ray. The contribution of the ray r exiting
from the lens at a distance ρ from its center, can be
written as:

I = I(ρ,σ, R) · F · T.

The various contributing terms are as follows:
• I(ρ,σ, R) describes the (uneven) intensity distribution

on the exit section of the lens. The polar coordinate ρ
(distance from the center of the lens) can be replaced
by Cartesian coordinates, leading to:

where Imax is the maximum intensity, measurable in
the middle of the lens.

• F accounts for the distribution of divergence angles
in the primary beam. Following the discussion in Sec.
3.1, we can consider a Gaussian distribution of

angles: In this 

expression ∆β is the angle between a given ray and an
ideal ray possessing no divergence, whereas σβ is the
HWHM of the distribution curve (≈0.3°, cf. Sec. 3.1).
The angle β can be calculated from the known ∆α
and ∆θ angles as ∆β = arccos[cos(∆α)cos(∆θ)].

• T accounts for absorption and (possible) thin film
effects. If the specimen is a powder layer of finite
thickness (or, equivalently, a randomly-oriented thin
film), indicating by t the thickness of the layer, by τ
the information depth [17] and by µ the linear absorp-
tion coefficient, T reads:

For the ψ-tilt geometry considered here, the informa-
tion depth is τ = sin(θ)cos(ψ)/(2µ).
The contribution of the ray r thus becomes:

Further effects (uniformly) reducing the intensity of
each ray are the finite thickness of the foils (reduction
of the total intensity by the ratio of the empty cross-sec-
tion area to the total cross-section area) and the scatter-
ing/absorption of air (the complete path-length is
known for each ray). For a complete evaluation, the
transmittance functions of PFC and crystal analyzer,
should be included as well. The effect of these parame-
ters, however, is negligible (or just a scale factor) and
therefore will not  be considered in detail.

4.4 Calculation of the θθ /2θθ Pattern

The instrument-broadening profile can be obtained
by fixing 2θb in correspondence to the expected peak
maximum (Bragg angle), and then simulating a θ /2θ
scan by taking a Dirac delta function to model speci-
men response. Following the experimental practice, the
detector angle θd is set equal to the incident angle θ, and
for each angle θ considered, a sufficient number of rays
is generated with a divergence distributed according to
Sec. 4.3 (to guarantee the convergence of the Monte-
Carlo algorithm). The rays are traced and the thus
obtained (cumulated) intensity, assigned to the 2θd

angle. An ideal diffraction system would give a dif-
fracted signal only when θ = θb = θd; in our case, on the
contrary, broadened peaks due to the geometrical fea-
tures of the instrument are obtained.

The emission profile and the sample related
(size/strain broadening) profile can then be convoluted
to the instrument profile to obtain the expected diffrac-
tion line shape.

It is worth noting here that this is a simplified calcu-
lation scheme, giving reasonably good results. A more
rigorous approach would consider a distribution of
wavelengths in the Monte-Carlo raytracing (for
instance following Hölzer et al. [22]): each ray would
be assigned a wavelength according to the distribution,
and a sufficient number of rays would be chosen in
order to consider a proper number of wavelengths. This
would increase considerably the calculation time, but
would probably not provide any significant contribu-
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tion to the quality of the results; the satisfactory agree-
ment between simulations and measured profiles (cf.
Sec. 5) supports this hypothesis.

To finally contribute to the measured intensity, a ray
must cross all optical devices and reach the detector. To
increase the computation speed, the sequence of evalu-
ation of the position of the ray at the entrance (exit) of
the various optical components must be conveniently
chosen. Once the position and the direction of the dif-
fracted ray is known, the position of the ray on the
entrance section of the detector is first calculated [using
Eq. (19)]. If the ray has a chance to hit the detector win-
dow, then the other optical devices, in inverse order, are
considered (i.e., crystal analyzer and parallel foils col-
limator). In this way, only the rays that have chances to
reach the detector are actually traced.

5. Simulation and Comparison With
Experimental Data

The proposed raytracing algorithm can be conve-
niently integrated in a larger frame of model fitting or
data processing. From this point of view, in order to
preserve the statistical meaning of the measurements,
the raytracing results (i.e., the transfer function for the
instrument) should not be used to pre-process the raw
data but as an active element in the model.

To avoid the introduction of interpretative models
and for displaying/qualitative analysis only, in the fol-
lowing, the application of the correction curves to raw
data will be shown. It should be stressed that the proce-
dure is not wrong in that only the statistical significance
of the result (i.e., the error associated to the extracted
parameters) is affected.

5.1 Intensity Effects in Texture Analysis

A set of pole figures is traditionally used to obtain
the orientation distribution function (ODF) for a given
specimen (for more details on the topic see, e.g., Ref.
[38]). However, just a small portion of a pole figure
(inner core) can be directly employed without correc-
tions: in fact, data collected by a parallel beam diffrac-
tometer at low ψ and high 2θ are marginally affected by
instrumental (and specimen-related) aberrations.

An experimental example will be used to clarify the
problem: Figs. 8a and 8b show the 111 and 200 pole
figures for a cerium oxide thin film produced by laser
ablation [39]. Due to the particular texture of the film
(cube on cube), two independent pole figures are suffi-

cient for a full reconstruction of the orientation distri-
bution function.

In particular, the ODF can be obtained by using only
the inner core of the (111) and (200) pole figures (0° to
50° tilting), almost unaffected by instrumental aberra-
tions. If the so-obtained ODF is used to reconstruct
back the two generating pole figures (see Figs. 8c and
8d), features on the outer ring appear, not matched by
the experimental data.

Some additional examples are provided to show the
performance of the raytracing procedure in real cases of
study:
• Figure 9 shows the 110, 220, and 321 reflections of

the tungsten powder (details can be found in Ref.
[19]). Using the same instrumental parameters, the
correction curves can be generated on a wide 2θ
range. The agreement between data and model is
excellent. The rippling in the curves is due to round-
off errors in the calculations and statistical variations
in the Monte Carlo algorithm.

• A particular texture is developed by a Ni(V) alloy
subjected to cold rolling: (200) and (220) raw pole
figures are shown in Figs. 10a and 10b, respectively,
together with the corresponding corrected data (Figs.
10c and 10d, respectively). The effect of the correc-
tion on the outer rim of the pole figure is clearly vis-
ible; the measured intensity on the outer rim is quite
low with respect to the expected value.

• Copper films produced by sputtering present a com-
plex fiber texture. The {111} and {200} pole figures
for a 500 nm film (data on the stress of these films
have already been presented elsewhere; see for
instance Ref. [20]) is shown in Fig. 11. These two
pole figures can be corrected and then used by the
commercial X’Pert Texture software to reconstruct
the ODF for the film. From the ODF obtained in this
way, the {331} and {420} pole figures can be simu-
lated. The agreement between simulation and raw
{331} and {420} pole figures (corrected using the
raytraced data) is excellent, as shown in Fig. 12.

Correction for Specimen Rotation

In principle, even pole figures of a fiber-textured
specimen (i.e., rotationally symmetric texture), can in
some cases lose their symmetry because of an odd
specimen shape. The case of rectangular specimens is a
typical example; the raytracing can then be used to pre-
dict and to correct for these effects.

Figure 13 shows the ϕ scan (at ψ = 60°) for a square
(14 mm × 14mm, (a)) and a rectangular (22 mm ×
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4 mm, (b)) tungsten specimen. Both diagrams follow a
similar pattern with a 180° repetition period; this is a
clear effect of the particular shape of the specimen. For
a specimen bigger than the (footprint of the) incident
beam or for a rotationally symmetric specimen, the
intensity should be a constant, the specimen always
being illuminated during the measurement. Should the
specimen possess an odd shape and should the beam
footprint on the specimen surface be smaller than the
specimen surface itself, then during a ϕ scan a varying
portion of the surface will be bathed by the beam. For
a rectangular specimen, in particular, the illuminated
area is expected to be maximum when beam and spec-
imen diagonal are aligned and minimum when the
smaller side of the specimen is aligned with the beam.
Measurement and raytraced data agree quite well and
confirm the expected result. The small differences can
be ascribed to edge effects not considered in detail here.
In particular, the specimens were not perfectly rectan-
gular (edges are rounded) and the effect of the penetra-
tion on the near-edge regions hasn't been considered.

5.2 Fitting and Interpolation of the Raytraced
Data

The main drawback of the Monte Carlo procedure is
the slow calculation speed. For a given system, a possi-
ble way to get a quicker evaluation of the correction
curve is to model the Monte Carlo data using a tech-
nique analogous to the “experimental” correction pro-
posed by Welzel and Leoni [19]. The gain is both in
speed (there is no need for experimental measurements)
and flexibility (it can be easily adapted to new condi-
tions). Moreover, better accuracy is obtained with
respect to any other correction method based on simpli-
fied or empirical formulae. Since the variation in the
peak parameters with respect to the angular parameters
of the system are quite smooth, a linear or a cubic
spline interpolation can be successfully used to access
regions for which the correction has not been calculat-
ed.
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Fig. 8. Highly textured ceria thin film. In (a) and (b) the (111) and (200) measured pole figures are shown. The corresponding simulations on the
basis of the ODF calculated for the film from the inner core of a larger set of pole figures are shown in (c) and (d). Due to instrumental effects,
the poles on the rim of (d) can hardly be seen in the actual measurement.

a b

c d



5.3 Aberrations in Stress Analysis

Extensive literature exists on the determination of
the residual stress state in the surface and sub-surface
regions of the most diverse materials (see, e.g., Refs.
[17,18]). The aberrations influencing the accuracy of
stress data are those modifying the position of the dif-
fraction peaks (quite common in the Bragg-Brentano
geometry, due to specimen positioning, tilting, flat sur-
face etc.). Intensity aberrations can be neglected, play-
ing a major role in texture determination, whose effect
on the stress evaluation is, in most cases, of second
order. Intensity, on the other hand, can be a serious
problem at high tilting when only a small fraction of the
signal reaches the detector, seriously affecting the sig-
nal/noise ratio.

In most literature work, however, instrumental
effects (in particular peak shift) are not taken into
account or not (explicitly) corrected for. A comparison
between pinhole and polycapillary collimators in paral-
lel beam geometry (cf. Ref. [40]), has shown correc-
tions to be necessary only when the former are used.
The proposed raytracing algorithm can be used to
obtain correction curves for instrumental effects in
θ /2θ scans at different tilt ψ traditionally used for stress
analysis and to validate the findings of Scardi et al.
[40].

Modeling shows absence of instrumental effects
within the accessible angular range. Shape, width and
position of diffraction peaks are not influenced by the
tilting (Fig. 14) i.e., instrumental effect on the sin2ψ
plot are absent or negligible. As also clear from Fig. 15,
simulations are in good agreement with the data of Ref.
[40]. Non-perfect parallelism in the beam and specimen
displacement/shape effects, however, could cause a fic-
titious shift in the peak position.

5.4 Instrumental Function and Influence of the
Optical Devices on the Profile Shape

Besides introducing possible variations in intensity,
peak shape and peak position, optical components
affect the width of the reflection as commonly seen in
a θ /2θ scan. Possible factors influencing this phenom-
enon have already been extensively studied for tradi-
tional Bragg Brentano diffractometers [26]. For a par-
allel beam setup such as the one considered here, the
expected variation is limited because of the intrinsical-
ly high divergence of the beam (the problem is more
critical on high resolution diffractometers).
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Fig. 9. Tungsten powder: (a) low (b) mid and (c) high angle meas-
urements. The reflections shown are (110) at 2θ = 40.26°, (220) at
2θ = 87.02°, and (321) at 2θ = 131.39°, respectively. The same geo-
metrical parameters (MRD I) were used to simulate all curves. Full
dots correspond to raw data, lines to the results of simulation.
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Two specimens have been used to characterize the
instrumental function, namely a NIST standard (LaB6,
NIST SRM 660a, Ref. [21]) and a commercial ZnO
powder. The SRM 660a is certified for line position and
absence of specimen-related broadening, but ZnO is a
valid alternative when the resolution of the instrument
is not particularly high. Moreover, unlike lanthanum
hexaboride, ZnO permits the preparation of specimens
showing very flat surfaces and high resistance to han-
dling (e.g., they can be employed for measurements at
negative ψ tilting (powder upside-down)).

Figure 16 shows a set of LaB6 reflections collected
on MRD II and the corresponding modeling results.
The raytraced profile well approximates the measured
peak both at low and high 2θ angle. We should bear in
mind that the simulation was conducted using nominal
values for the instrument dimensions, thus the model
parameters are not optimized. To fill the minimal gap
between experiment and simulation, fitting of the

model equations on the experimental data would be
necessary.

Figure 17 shows an analogous measurement con-
ducted on ZnO. As expected for the relatively low res-
olution of these  optics, the differences between zinc
oxide and SRM 660a (Fig. 16) are negligible.
Considering that a complete distribution of wave-
lengths was not used in the primary beam, (we use a
single wavelength in the raytracing and we convolve
the raytraced profile with the emission profile) the
agreement between model and simulation is rather
good; the low angle reflections are a bit broader than
expected, whereas the opposite is true for the high
angle ones (cf. Figs. 17a and 17b). Accounting for the
correct wavelength dispersion, would probably correct
for this discrepancy.
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Fig. 10. (a) measured (200) and (b) (220) pole figures for a Ni(V) specimen subject to cold rolling. The corresponding corrected data (expected
pole figures) are shown in (c) and (d), respectively.
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Fig. 11. Sections through the (a) (111) and (b) (220) pole figures for
a <111> fibre-textured thin copper film produced by magnetron sput-
tering: measured data (full dots), corrected data (open circles) and
modelled curve (line). Measurement conducted on MRD I.

Fig. 12. Sections through the (a) (331) and (b) (420) pole figures for
a <111> fibre-textured thin copper film produced by magnetron sput-
tering: measured data (full dots), corrected data (open circles) and
curves obtained by means of the ODF extracted from the (111) and
(200) pole figures (line). Measurement conducted on MRD I.
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a
b

Fig. 13. Accounting for the actual specimen shape: observed (dots) and modelled (line) intensity variation by rotating (a) a 14 mm × 14 mm
square specimen and (b) a 22 mm × 8 mm rectangular specimen. The specimen was made of tungsten, and the observation refers to the (110)
reflection, ψ = 60°, 2θ = 40.26°. Beam size 4 mm × 4 mm. Measurement conducted on MRD I.

Fig. 14. Simulation of the (321) reflection of the NIST SRM660a LaB6 standard on MRD II: peak posi-
tion does not vary tilting the specimen (for clarity the curves have been normalised). Analogous results
can be obtained for negative tilting. Beam size 2 × 2 mm, specimen size 20 × 20 mm.
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Fig. 15. Trend of peak position (a) and Half Width at Half peak
Maximum (HWHM) (b) versus specimen tilting for the 422 reflec-
tion of gold. Data collected on MRD II (squares = 1 × 1 mm slits
opening, stars = 4 × 4 mm slits opening) are taken from Scardi et al.
2000 (cf. Fig. 4 in cited paper). Simulations are shown as continuous
lines (for clarity, data shifted as in the cited paper).

Fig. 16. Instrumental profiles for MRD II measured using the
SRM660a LaB6 standard. The 100, 321 and 510 reflections are
shown in (a),(b),(c), respectively. The specimen was square (2 × 2
cm) and was mounted on an aluminium frame; beam size was limit-
ed to 2 × 2 mm. Open dots correspond to raw data, whereas continu-
ous line is the result of simulation.



6. Conclusions

A procedure has been presented for the raytracing of
a parallel-beam diffractometer. The emphasis has been
placed on the analysis of an instrument possessing a
polycapillary collimator on the primary path. The pro-
posed algorithm permits the evaluation of the instru-
ment response in various diffraction modes. In particu-
lar, instrumental effects such as the variation of intensi-
ty and peak position, as well as the dependence of the
profile shape on the diffraction angle can be easily
obtained. The algorithm is quite flexible and can be
easily adapted to any diffractometer.

Corrections for pole figure measurement, residual
stress analysis, and traditional θ /2θ diffraction experi-
ments are proposed and tested against measured data.
Excellent agreement is found even in regions where tra-
ditional simplified models fail.

Raytracing and instrumental modeling represents a
valid tool for experiment planning, providing a predic-
tion of the instrumental response and accounting for
possible aberrations and artifacts.

The results of the present work will serve as a basis
for the analysis of 2-dimensional diffraction maps (e.g.,
reciprocal space maps and stress/texture maps).
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